

SafeGreece 2020 – 7th International Conference on Civil Protection & New Technologies

14-16 October, on-line | www.safegreece.gr/safegreece2020 | 2020@safegreece.gr

Coastal Inundation due to Storm Surges on a Mediterranean deltaic area under the effects of Climate Change

Lab of Maritime

Engineering

School of Civil

Engineering

Aristotle University

of Thessaloniki

- Y. Krestenitis
- C. Makris
- V. Baltikas
- Y. Androulidakis

EPANEK 2014-2020
OPERATIONAL PROGRAMME
COMPETITIVENESS•ENTREPRENEURSHIP•INNOVATION

Description of Research Theme

Storm Surge: Sea Level Elevation due to low SLP + high Winds

- Increase of **coastal inundation** and erosion **risk** on coastal low-land areas
- Intense impacts on: People Properties Habitats Public spaces Agriculture
- Focus area: **Mediterranean** basin
- Case study: **northern Aegean** → coastal zone of **Nestos river delta**
- Large scale outputs:
 - Maps of hazard areas of high coastal sea levels
 - Occurrence probabilities of storm surge levels
 - Magnitudes of storm surge levels
- Fine scale outputs:
 - > Flooded areas of extreme storm surge
 - > Probabilities of flood events by extreme storm surge
 - Coastal Flood Risk indexing

Aims & Objectives of Research

Climate Change impacts on Storm Surge Sea Levels

- Investigation through modelling of storm surge in the Mediterranean for 130 years (1971-2100)
- Estimation of **future magnitudes** and **occurrence frequencies** of **storm surge maxima** under several available (mediocre to pessimistic) **climatic scenarios** for GHG concentrations
- Climate Change Impact signal on the Mediterranean coastal zone

Climate Change impacts on Coastal Inundation levels

- Estimate coastal inundation probabilities and extents
- Introduce a coupled system of surge-flood model
- Estimate Coastal Vulnerability Index due to storm surge inundation
- Focus on a Greek coastal zone with river delta

Methodology

Climatic Data RCMs / RCPs / Study Periods

Atmospheric forcing for MeCSS model:

Wind (velocity and direction) Sea Level Pressure

3 Regional Climate Models (RCMs) MED-CORDEX initiative https://www.medcordex.eu/

CMCC-CCLM CNRM-ALADIN GUF-CCLM-NEMO

2 Representative Concentration Pathways IPCC 2014

RCP4.5 (mediocre) RCP8.5 (pessimistic)

3 Study Periods

Control Run Reference Period (**1971-2005**)

Future Runs Short-term Future (2021-2055) Long-term Future (2066-2100) Periods

Climate data Validation

against **ECMWF** re-analyses **CERA-20C** https://www.ecmwf.int/en/research/projects/cera

check for extreme barometric systems **Deep Depressions** over the Mediterranean region

Methodology

Storm Surge Model **MeCSS**

Numerical Model 2-D Shallow Water Equations

 $\frac{\partial \zeta}{\partial t} + \frac{\partial}{\partial x}UH + \frac{\partial}{\partial y}VH = 0$

Results: Sea Surface Height **SSH**

Boundaries: Closed basin

1971-2100

 $\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} - fV + g \frac{\partial \zeta}{\partial x} = -\frac{1}{\rho_o} \frac{\partial P_A}{\partial x} + E_h \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} \right) + \frac{1}{\rho_o} C_s \frac{W_x \sqrt{W_x^2 + W_y^2}}{(h + \zeta)} - C_b \frac{U \sqrt{U^2 + V^2}}{\rho_o (h + \zeta)}$

 $\frac{\partial V}{\partial t} + U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} + fU + g \frac{\partial \zeta}{\partial y} = -\frac{1}{\rho_o} \frac{\partial P_A}{\partial y} + E_h \left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} \right) + \frac{1}{\rho_o} C_s \frac{W_y \sqrt{W_x^2 + W_y^2}}{(h + \zeta)} - C_b \frac{V \sqrt{U^2 + V^2}}{\rho_o (h + \zeta)}$

Available Field Data

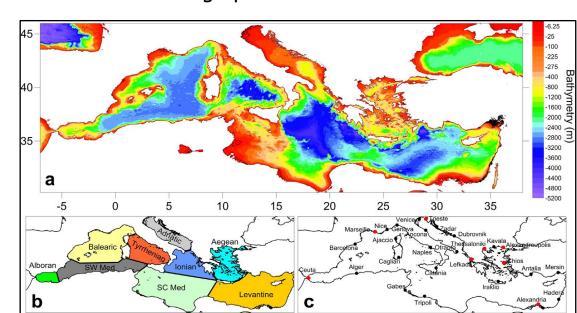
SSH

by HNHS + GLOSS tide-gauges

5+4 stations

1995-2005

Signal processing:


Simulation Period:

De-tiding

Removal of steric effects

High-pass filter

- a) Mediterranean Sea bathymetry MeCSS model domain
- b) Regional Seas
- c) 8 tide-gauge stations (**red dots**) + 20 locations (**black dots**)

Methodology

Coastal Inundation Module CoastFLOOD

Numerical Model

Floodplain Manning-type flow

Mechanics:

SSH difference between neighboring cells

Concept:

Raster-based storage cell LIFLOOD-FP

Boundaries:

SSH on the seafront by MeCSS

Simulation Period:

hours to days

Cases:

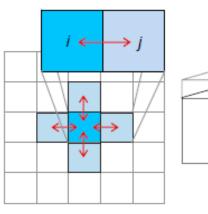
35-yr maxima of storm surge events

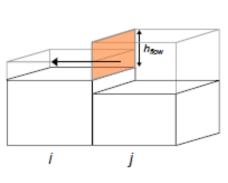
Scales:

Large inundation areas

$$\frac{dh_{i,j}}{dt} = \frac{Q_x^{i-1,j} - Q_x^{i,j} + Q_y^{i,j-1} - Q_y^{i,j}}{dxdy}$$

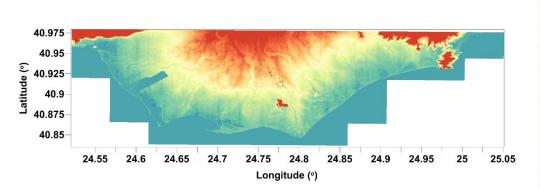
$$Q_x^{i,j} = \frac{h_{flow}^{5/3}}{n} \cdot \left(\frac{h_{i-1,j} - h_{i,j}}{dx}\right)^{1/2} dy \qquad Q_y^{i,j} = \frac{h_{flow}^{5/3}}{n} \cdot \left(\frac{h_{i,j-1} - h_{i,j}}{dy}\right)^{1/2} dx$$

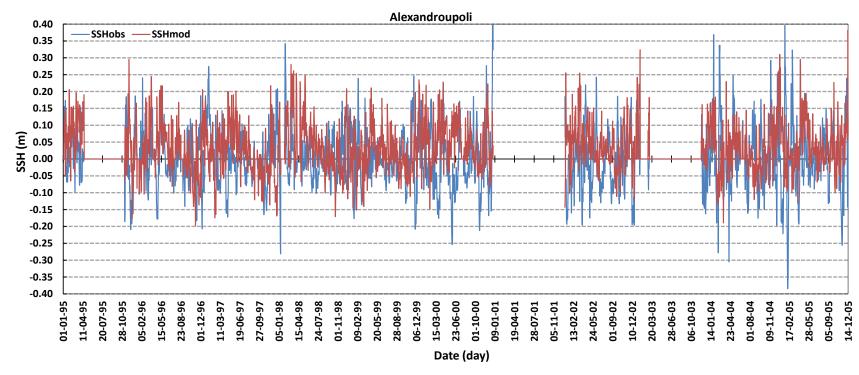

Coastal zone - Nestos deltaic area


CoastFLOOD module:

dx = 5m

28 million cells !!


Hellenic Cadastre https://www.ktimatologio.gr/


land elevation map

MeCSS results: SSH timeseries

Qualitative validation

Comparison of the

10-yr timeseries

SSH (m) in Alexandroupoli

modelled output (mod)

VS.

field data (obs)

Quantitative validation

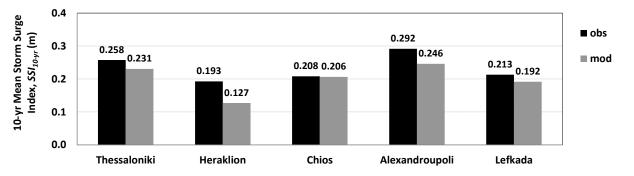
$$E(\%) = 100 \cdot \left(\overline{SSI_{\text{mod}}} - \overline{SSI_{obs}}\right) / \left(\frac{\overline{SSI_{\text{mod}}} + \overline{SSI_{obs}}}{2}\right)$$
 Error Index

$$COR(SSI_{i}) = \left(\frac{\sum_{i=1,5} \left(SSI_{\text{mod}} - \overline{SSI}_{\text{mod}}\right) \cdot \left(SSI_{obs} - \overline{SSI}_{obs}\right)}{\sum_{i=1,5} \left(SSI_{\text{mod}} - \overline{SSI}_{\text{mod}}\right)^{2} \cdot \sum_{i=1,5} \left(SSI_{obs} - \overline{SSI}_{obs}\right)^{2}}\right)$$

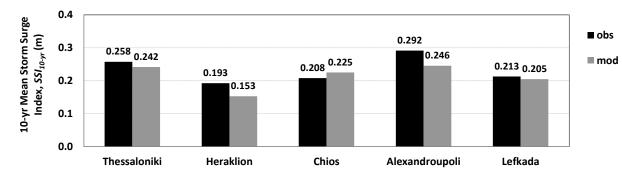
Pearson correlation

$$RMSE = \sqrt{\frac{\sum_{i=1}^{5} \left(SSI_{mod,i} - SSI_{obs,i}\right)^{2}}{5}}$$

RMS Error


$$WSS_{SSI} = 1 - \frac{\sum_{i=1}^{5} \left| SSI_{\text{mod}} - SSI_{obs} \right|^{2}}{\sum_{i=1}^{5} \left(\left| SSI_{\text{mod}} - \overline{SSI_{\text{mod}}} \right| + \left| SSI_{obs} - \overline{SSI_{obs}} \right| \right)^{2}}$$

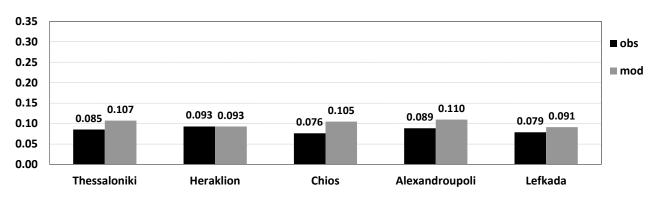
Wilmmott Skill Score


MeCSS results: Inter-/Intra- Annual Maxima

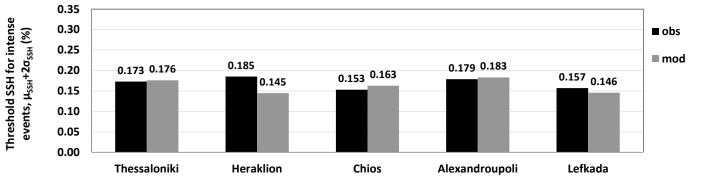
CMCC-forced MeCSS

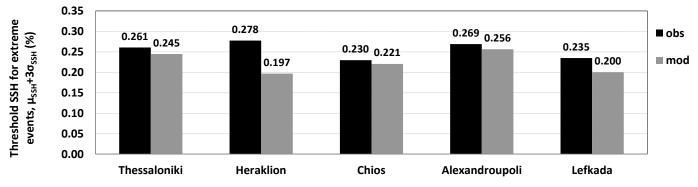
GUF-forced MeCSS

Coastal Site	SSI _{obs,10yr} (m)	SSI _{mod,10yr} (m)	MEAN E _i (%)	MEAN EI _i	Pearson Correlation	Willmot Skill Score
Thessaloniki	0.258	0.231	-10.54%	-0.342	0.849	0.735
Heraklion	0.193	0.127	-32.11%	-0.857	RMSE	RMSE/SSI _{mean}
Chios	0.208	0.206	-0.18%	0.018	0.039	18.0%
Alexandroupoli	0.292	0.246	-16.92%	-0.519		
Lefkada	0.213	0.192	-10.30%	-0.322		


Coastal Site	SSI _{obs,10yr} (m)	SSI _{mod,10yr} (m)	MEAN E _i (%)	MEAN EI _i	Pearson Correlation	Willmot Skill Score
Thessaloniki	0.258	0.242	-6.29%	-0.206	0.793	0.816
Heraklion	0.193	0.153	-16.82%	-0.486	RMSE	RMSE/SSI _{mean}
Chios	0.208	0.225	8.28%	0.281	0.029	13.1%
Alexandroupoli	0.292	0.246	-17.20%	-0.561		
Lefkada	0.213	0.205	-4.17%	-0.133		

Statistical Measures

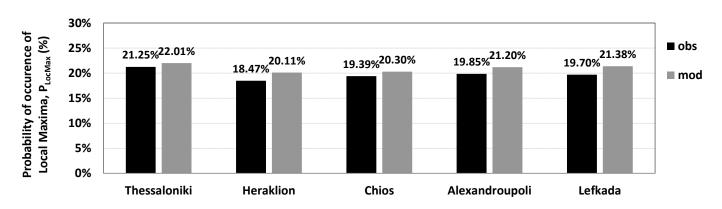

Threshold SSH for coherent events, $\mu_{SSH}^{+\sigma_{SSH}}$ (%)


Comparison of 10-yr thresholds of SSH (m)

in 5 Greek stations for mod and obs data

Coherent events

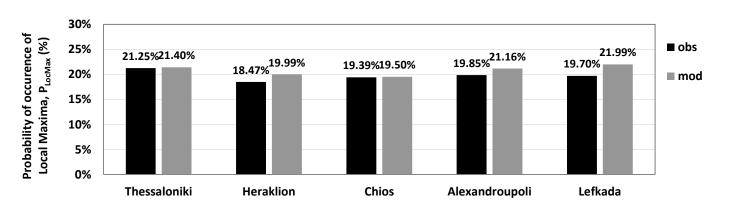
Intense events



Extreme events

Probabilities of Occurrence

CMCC-forced MeCSS

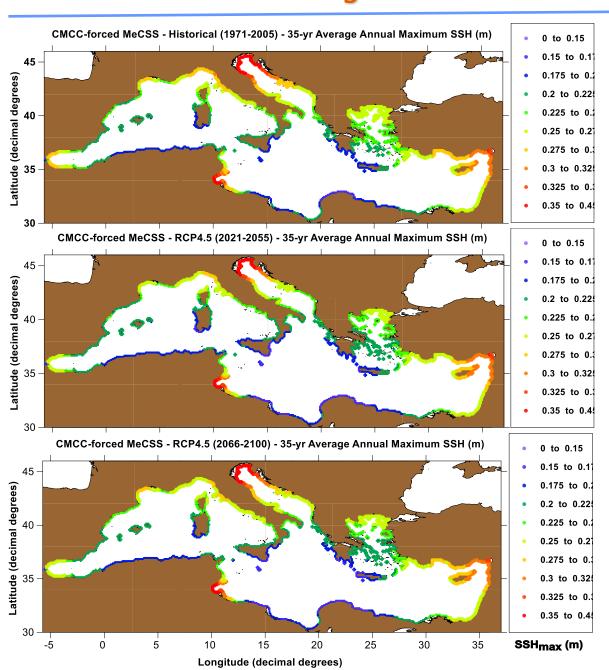

Comparison 10-yr probabilities of occurrence

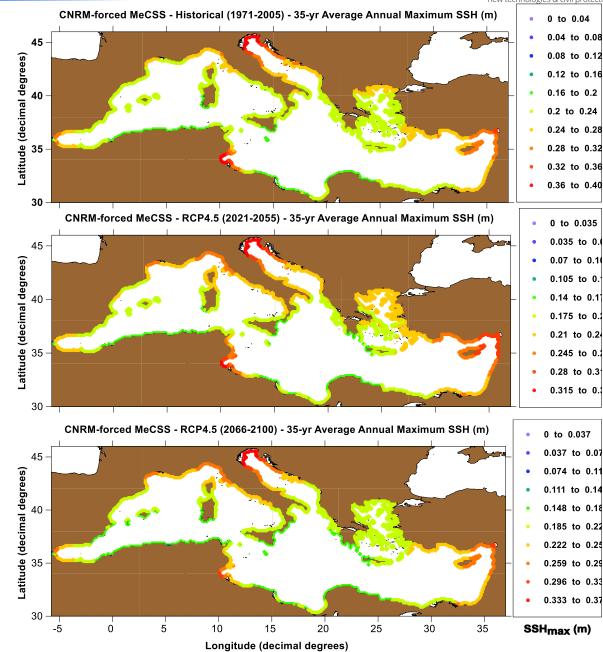
for local maxima in SSH timeseries (%)

of 5 Greek stations for

modelled (mod) and field (obs) data

CNRM-forced MeCSS




Results

Storm Surge Levels in the Coastal Zone

RCP4.5

Results

Signals under Climate Change Effects

CMCC	-forced N	VieCSS	AVERAGE of	f 28 stations		
SCENARIO	PERIOD	YEAR	DSSH _{max} (m)	DSSH _{max} (%		
	Near	2021-2055	0.008	2.54%		
RCP4.5	Future	e 2021-2033 0.008 2.34/0				
1101 4.5	Far	2066-2100	-0.012	-3.54%		
	Future	2000-2100	0.012	3.5470		
	Near	2021-2055	-0.013	-3.41%		
RCP8.5	Future	2021-2033	0.013	3.41/0		
1101 0.5	Far	2066-2100	-0.024	-7.05%		
	Future	2000 2100	0.02 1	7.0370		
CNRM	l-forced I	MeCSS	AVERAGE of	GE of 28 stations		
SCENARIO	PERIOD	YEAR	DSSH _{max} (m)	DSSH _{max} (%		
	Near	2021-2055	-0.042	-11.55%		
RCP4.5	Future		0.042	11.5570		
1101 4.5	Far 2066-2100 -0.027 -7.6	-7.63%				
	Future	2000 2100	0.027	7.0370		
	Near	2021-2055	-0.025	-6.25%		
RCP8.5	Future			0.2070		
	Far	2066-2100	-0.017	-4.35%		
	Future					
GUF-	forced N	leCSS	AVERAGE of	f 28 stations		
SCENARIO	PERIOD	YEAR	DSSH _{max} (m)	DSSH _{max} (%		
	Near	2021-2055	-0.013	-2.91%		
RCP4.5	Future	2021 2033	0.013	2.5170		
	Far	2066-2100	-0.028	-7.42%		
	Future		0.023	71.1270		
	Near	2021-2055	-0.031	-8.01%		
RCP8.5	Future	-3== -330		0.01/0		
	Far	2066-2100	-0.037	-9.56%		
	Future	355 =300				

Differences of future - past

Storm surge maxima DSSH_{max} (m) and (%)

in 28 Mediterranean stations

2 future study periods (2021-2055 and 2066-2100)

2 RCPs

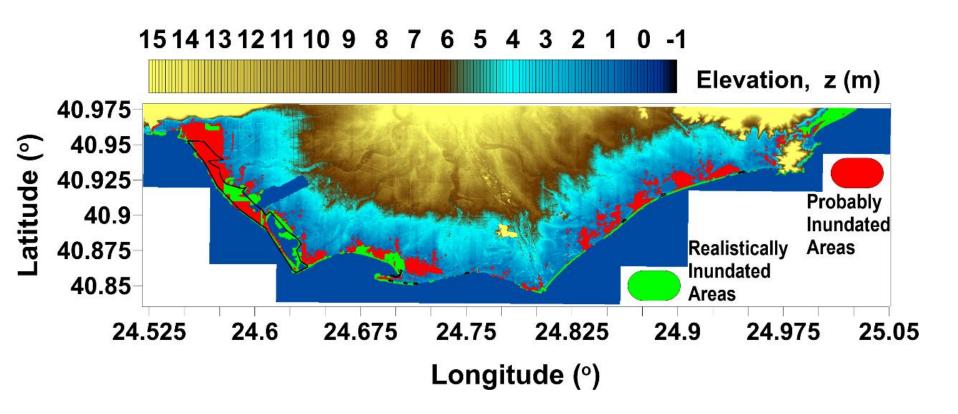


Illustration of the simulated results of storm surge inundation in low-land areas coastal for a theoretical extreme value of SSH > 0.5 m, in Nestos river delta. Red color refers to probably inundated low-land areas; green color refers to actually inundated areas by realistic CoastFLOOD simulations; black closed lines refer to possibly affected areas (lagoons; urban, port and touristic areas).

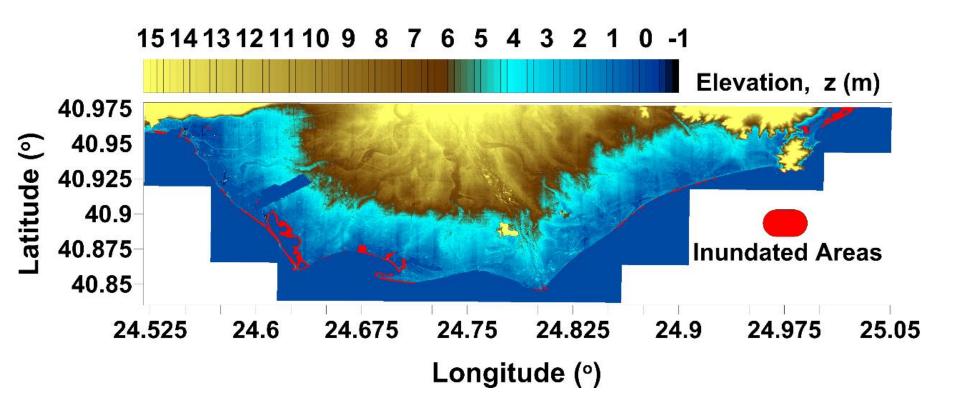
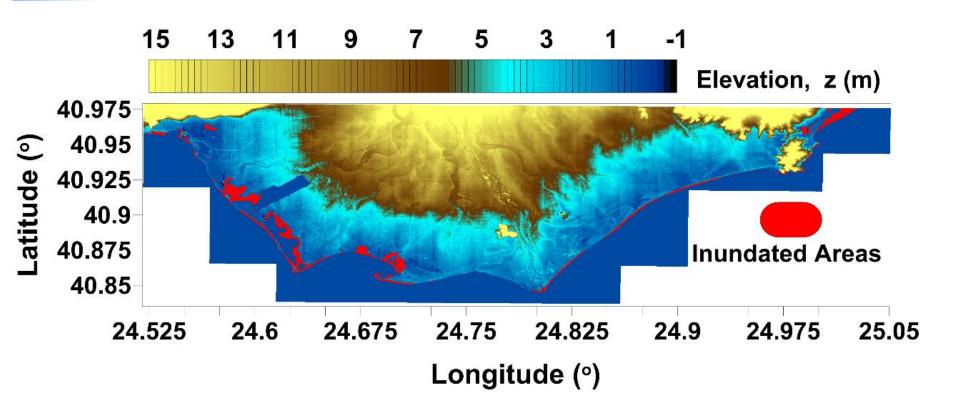
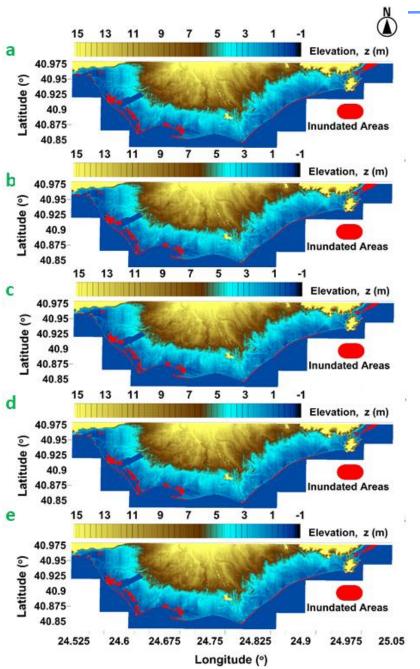



Illustration of the simulated results of storm surge inundation in low-land areas coastal for a mild event with value of SSH > 0.201 m, in Nestos river delta. Probably affected coastal areas of interest are portrayed with red color.

Reference Max Flood Areas



Estimated inundation areas due to 50-year storm surge maxima based on CMCC-forced MeCSS-driven CoastFLOOD simulations in the region of interest at the Nestos river delta; Scenario/Period: Historical (1971-2000).

Results

Estimated inundation areas due to storm surge based on

GUF-forced MeCSS-driven CoastFLOOD simulations

In the region of interest at the Nestos river delta

Scenarios/Periods

- Historical (1971-2000)
- b) RCP4.5 (2021-2050)
- RCP4.5 (2071-2100)
- d) RCP8.5 (2021-2050)
- RCP8.5 (2071-2100)

Estimated Floods

MeCSS-driven CoastFLOOD (M-CF) model results

A) Flooded Area FA (ha)

Study C	Case		Α			В			С	
		СМСС	CNRM	GUF	СМСС	CNRM	GUF	CMCC-CNRM	CNRM-GUF	GUF- CMCC
Scenario	Period	M-CF	M-CF	M-CF	M-CF	M-CF	M-CF	M-CF	M-CF	M-CF
		FA (ha)	FA (ha)	FA (ha)	Diff (%)	Diff (%)	Diff (%)	Diff (%)	Diff (%)	Diff (%)
Historical	RP	380.897	354.832	452.257	0	0	0	7.09	-24.14	17.13
RCP4.5	STF	381.420	358.847	447.705	0.14	1.13	-1.01	6.10	-22.03	15.99
RCP4.5	LTF	352.045	356.615	382.425	-7.57	0.50	-15.44	-1.29	-6.98	8.27
RCP8.5	STF	365.465	377.780	359.442	-4.05	6.47	-20.52	-3.31	4.97	-1.66
RCP8.5	LTF	359.477	365.055	383.352	-5.62	2.88	-15.24	-1.54	-4.89	6.43

A) Flooded Probability FP (%)

Study C	ase		Α			В			С	
		СМСС	CNRM	GUF	CWCC	CNRM	GUF	CMCC-CNRM	CNRM-GUF	GUF-CMCC
Scenario	Period	M-CF	M-CF	M-CF	M-CF	M-CF	M-CF	M-CF	M-CF	M-CF
		FP (%)	FP (%)	FP (%)	Diff (%)	Diff (%)	Diff (%)	Diff (%)	Diff (%)	Diff (%)
Historical	RP	0.15	0.09	0.35	0	0	0	44.90	-115.18	80.72
RCP4.5	STF	0.09	0.01	0.35	-38.66	-91.58	0.86	168.00	-191.21	117.86
RCP4.5	LTF	0.08	0.03	0.25	-42.34	-65.32	-27.67	89.66	-154.29	98.79
RCP8.5	STF	0.10	0.10	0.23	-33.99	8.43	-32.01	-3.96	-79.88	83.19
RCP8.5	LTF	0.04	0.05	0.15	-73.23	-46.90	-57.42	-22.72	-99.49	115.67

B) respective differences Diff (%)

between climatic scenario runs

C) Diff (%) by different forcing input as CMCC-, CNRM-, GUF-forced MeCSS

Climate Change Impacts

Risk = Probability × Consequence

Risk matrix for **CFRI** (Coastal Flood Risk Index)

refers to large scale coastal inundation by extreme storm surge events, defined by the seawater flooded area and the corresponding flood probability derived with the coupled MeCSS-CoastFLOOD model

PERIOD	RP: 1971-2000
RCM\WCS	REF
смсс	2
CNRM	1
GUF	5

SCENA	RIO \ PERIOD	ST	F: 2021-20	50	LTF: 2071-2100			
RCP	RCM \WCS	REF	СС	EXT	REF	СС	EXT	
	смсс	1	1	1	1	1	1	
4.5	CNRM	1	1	1	1	1	1	
	GUF	5	5	5	3	3	3	
	смсс	2	2	2	1	1	1	
5.5	CNRM	2	2	2	1	1	1	
	GUF	3	3	3	2	2	2	

RANK	VALUE	COLOR
VERY LOW	1	
LOW	2	
MODERATE	3	
HIGH	4	
VERY HIGH	5	

$$R = H \times V$$

R is risk

H is hazard

V is vulnerability

$$V = \frac{E \times S}{C}$$

E is exposure

S is sensitivity

C is adaptive capacity

Discussion of Results

- Projections of coastal sea level changes due to short and mid time-scale processes, such as waves and storm surges, respectively, should be superimposed to projections of long-term MSL. In the present study, only the effects of storm surge on coastal inundation is considered, excluding the short-term wave-induced runup and coastal flooding or the projected long-term land loss and permanent inundation caused by regional SLR in the Mediterranean Sea due to CC.
- CoastFLOOD module in its present form is specifically set up (boundary conditions, simulation times, time stepping, etc.) for mid-term sea level elevations induced by steady-state storm surge events with rather slow evolution of coastal SSH.
- > Storage cell models with fixed time steps tend to be more sensitive to boundary conditions than hydraulic features in the floodplain domain, such as friction.
- Friction coefficient values usually cannot be determined *a priori*, and are used as a basic calibration factor, yet if the land use and terrain synthesis is known, then specified friction coefficients should be used.
- ➤ In general, the storage cell, raster-based, Manning-type, flood flow models are equally capable in floodplain flow prediction to more advanced diffusive wave models of 2-D SWEs.

MeCSS Storm Surge Model

- Comparison of model vs in situ 10-year mean SSI for MeCSS → high correlation (COR>0.79 reaching up to 0.89)
- Lowest RMSE of SSI and SSH_{max} (<3 cm, 13% of SSI_{mean}) for GUF-MeCSS run \rightarrow Very high WSS>0.80

- GUF-forced MeCSS model setup generally (yet not locally) most reliable performance of MeCSS for east-central MED
- MeCSS model also scores well in statistical thresholds

- It underestimates small values of SSH and performs better for large SSH for intense and extreme storm surge events
- MeCSS model perform well for the amount and occurrence frequency of surge events

Mediterranean Storm Surges

- > Extreme magnitudes of SSH range between 0.35 0.50 m in the Mediterranean
- > Higher values along parts of northern coasts and the Gulf of Gabes in its southern part
- > The spatial distributions of surge level maxima are estimated to remain similar to past periods
- Largest SSHmax of the Mediterranean occur in the Adriatic Sea for both model and measurements mainly due to the reinforcement of the inverse barometer effect with intense wind forcing mechanisms

- ➤ In general, only the **near future period** under **RCP4.5** shows a small increase of 2.5% compared to the reference period for the CMCC-forced MeCSS model run.
- > Assumption: RCP scenarios estimate in general a storminess attenuation in the Mediterranean during the 21st century

CoastFLOOD module

- The coastal inundation model simulations refer to the study area of the entire Nestos delta coastal zone with several floodplains on the local beaches and around the lagoons.
- CoastFLOOD model is a rather simplistic approach of horizontally decoupled Manning-type flow with terrain friction
 driven by the seawater elevation on the coastal floodplains. Nevertheless, it is a robust module capable of simulating
 coastal flooding on a raster-based, storage cell mapping that can represent probable inundation extents induced by
 storm surges in a reasonable time with the available computational resources.
- There is a rather consistent pattern of model output, i.e. that GUF-forced MeCSS and CoastFLOOD implementations overestimate SSH_{max} , FA and FP compared to the CMCC- and CNRM-forced setups for the Reference Period.
- GUF-forced CoastFLOOD overestimates by 80-200% the flood probability compared to the CMCC- and CNRM-forced setups.
- The most affected areas are the banks of the lagoons, the lower parts of coastal agricultural lands westernmost of the Keramoti town, a small part of the Keramoti port infrastructure, the coastal touristic sites on their shorefront, and the sandy beaches in the eastern part of the study region.

Coastal Floods under Climate Change

The proposed modelling approach of coastal inundation for deltaic areas focuses on the detailed representation of the inland terrain as a computational domain to achieve good estimative accuracy of arbitrary coastal flood events.

- The sum of the potentially flooded low-land areas, corresponding to values of land elevation $z \le 0.5$ m, in the study region of Nestos river delta was calculated to be 1,803.758 ha.
- The values of Flooded Areas (FA) refer to probably inundated areas due to 30-years maxima of SSH on the sea-front. Initially, the maximum reference level of possibly inundated coastal areas was determined as FA = 541.69 ha, which is equal to a 30.03% of the determined low-land areas.
- The GUF-forced CoastFLOOD overestimates the flood extents compared to the CMCC- and CNRM-forced setups for almost all study periods.
- The CMCC- and GUF-forced CoastFLOOD results show a tendency towards attenuation of coastal floods, i.e. with rather low values < -8% for the first one and down to higher negative scores of -20% for the latter (under any future RCP scenario).

Acknowledgements

This research is part of the **MEDAQCLIM** Project:

Integrated Quantitative Assessment of Climate Change Impacts on Mediterranean Coastal Water Resources and Socioeconomic Vulnerability Mapping

which is financed by National Action Plan: "European R&D Cooperation - Grant Act of Greek partners successfully participating in Joint Calls for Proposals of the European Networks ERA-NETS" and of the "Competitiveness, Entrepreneurship & Innovation" Program

AUTh team cordially thanks Prof. K. Tolika + Dr. K. Velikou (Div. of Climatology, AUTh) for climatic data analysis

EPANEK 2014–2020
OPERATIONAL PROGRAMME
COMPETITIVENESS-ENTREPRENEURSHIP-INNOVATION

